Design and Implementation of Cover Tree Algorithm on CUDA-Compatible GPU

نویسندگان

  • Mukesh Sharma
  • R. C. Joshi
چکیده

Recently developed architecture such as Compute Unified Device Architecture (CUDA) allows us to exploit the computational power of Graphics Processing Units (GPU). In this paper we propose an algorithm for implementation of Cover tree, accelerated on the graphics processing unit (GPU). The existing algorithm for Cover Tree implementation is for single core CPU and is not suitable for applications with large data set such as phylogenetic analysis in bioinformatics, in order to find nearest neighbours in real time. As far as we know this is first attempt made ever to implement the cover tree on GPU. The proposed algorithm has been implemented using compute unified device architecture (CUDA), which is available on the NVIDIA GPU. The proposed algorithm efficiently uses on chip shared memory in order to reduce the data amount being transferred between offchip memory and processing elements in the GPU. Furthermore our algorithm presents a model to implement other distance trees on the GPU. We show some experimental results comparing the proposed algorithm with it's execution on pre-existing single core architecture. The results show that the proposed algorithm has a significant speedup as compare to the single core execution of this code.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

Design and Implementation of GPU-Based Prim's Algorithm

Minimum spanning tree is a classical problem in graph theory that plays a key role in a broad domain of applications. This paper proposes a minimum spanning tree algorithm using Prim's approach on Nvidia GPU under CUDA architecture. By using new developed GPU-based Min-Reduction data parallel primitive in the key step of the algorithm, higher efficiency is achieved. Experimental results show th...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010